(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x)) →+ f(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, g

They will be analysed ascendingly in the following order:
f < g

(8) Obligation:

TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c

Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))

The following defined symbols remain to be analysed:
f, g

They will be analysed ascendingly in the following order:
f < g

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Induction Base:
f(gen_0':1':s:c3_0(0)) →RΩ(1)
true

Induction Step:
f(gen_0':1':s:c3_0(+(n5_0, 1))) →RΩ(1)
f(gen_0':1':s:c3_0(n5_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c

Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))

The following defined symbols remain to be analysed:
g

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol g.

(13) Obligation:

TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c

Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))

No more defined symbols left to analyse.

(14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(15) BOUNDS(n^1, INF)

(16) Obligation:

TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c

Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)